3.13.34 \(\int \frac {(b d+2 c d x)^4}{\sqrt {a+b x+c x^2}} \, dx\) [1234]

Optimal. Leaf size=117 \[ \frac {3}{4} \left (b^2-4 a c\right ) d^4 (b+2 c x) \sqrt {a+b x+c x^2}+\frac {1}{2} d^4 (b+2 c x)^3 \sqrt {a+b x+c x^2}+\frac {3 \left (b^2-4 a c\right )^2 d^4 \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 \sqrt {c}} \]

[Out]

3/8*(-4*a*c+b^2)^2*d^4*arctanh(1/2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a)^(1/2))/c^(1/2)+3/4*(-4*a*c+b^2)*d^4*(2*c*x+
b)*(c*x^2+b*x+a)^(1/2)+1/2*d^4*(2*c*x+b)^3*(c*x^2+b*x+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {706, 635, 212} \begin {gather*} \frac {3}{4} d^4 \left (b^2-4 a c\right ) (b+2 c x) \sqrt {a+b x+c x^2}+\frac {3 d^4 \left (b^2-4 a c\right )^2 \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 \sqrt {c}}+\frac {1}{2} d^4 (b+2 c x)^3 \sqrt {a+b x+c x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(b*d + 2*c*d*x)^4/Sqrt[a + b*x + c*x^2],x]

[Out]

(3*(b^2 - 4*a*c)*d^4*(b + 2*c*x)*Sqrt[a + b*x + c*x^2])/4 + (d^4*(b + 2*c*x)^3*Sqrt[a + b*x + c*x^2])/2 + (3*(
b^2 - 4*a*c)^2*d^4*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(8*Sqrt[c])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 706

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[2*d*(d + e*x)^(m - 1
)*((a + b*x + c*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] + Dist[d^2*(m - 1)*((b^2 - 4*a*c)/(b^2*(m + 2*p + 1))), In
t[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[
2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && (IntegerQ[2*p] || (IntegerQ[m] &
& RationalQ[p]) || OddQ[m])

Rubi steps

\begin {align*} \int \frac {(b d+2 c d x)^4}{\sqrt {a+b x+c x^2}} \, dx &=\frac {1}{2} d^4 (b+2 c x)^3 \sqrt {a+b x+c x^2}+\frac {1}{4} \left (3 \left (b^2-4 a c\right ) d^2\right ) \int \frac {(b d+2 c d x)^2}{\sqrt {a+b x+c x^2}} \, dx\\ &=\frac {3}{4} \left (b^2-4 a c\right ) d^4 (b+2 c x) \sqrt {a+b x+c x^2}+\frac {1}{2} d^4 (b+2 c x)^3 \sqrt {a+b x+c x^2}+\frac {1}{8} \left (3 \left (b^2-4 a c\right )^2 d^4\right ) \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx\\ &=\frac {3}{4} \left (b^2-4 a c\right ) d^4 (b+2 c x) \sqrt {a+b x+c x^2}+\frac {1}{2} d^4 (b+2 c x)^3 \sqrt {a+b x+c x^2}+\frac {1}{4} \left (3 \left (b^2-4 a c\right )^2 d^4\right ) \text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )\\ &=\frac {3}{4} \left (b^2-4 a c\right ) d^4 (b+2 c x) \sqrt {a+b x+c x^2}+\frac {1}{2} d^4 (b+2 c x)^3 \sqrt {a+b x+c x^2}+\frac {3 \left (b^2-4 a c\right )^2 d^4 \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 \sqrt {c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.41, size = 97, normalized size = 0.83 \begin {gather*} \frac {1}{8} d^4 \left (2 (b+2 c x) \sqrt {a+x (b+c x)} \left (5 b^2+8 b c x+4 c \left (-3 a+2 c x^2\right )\right )-\frac {3 \left (b^2-4 a c\right )^2 \log \left (b+2 c x-2 \sqrt {c} \sqrt {a+x (b+c x)}\right )}{\sqrt {c}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(b*d + 2*c*d*x)^4/Sqrt[a + b*x + c*x^2],x]

[Out]

(d^4*(2*(b + 2*c*x)*Sqrt[a + x*(b + c*x)]*(5*b^2 + 8*b*c*x + 4*c*(-3*a + 2*c*x^2)) - (3*(b^2 - 4*a*c)^2*Log[b
+ 2*c*x - 2*Sqrt[c]*Sqrt[a + x*(b + c*x)]])/Sqrt[c]))/8

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(721\) vs. \(2(99)=198\).
time = 0.69, size = 722, normalized size = 6.17

method result size
risch \(-\frac {\left (-16 c^{3} x^{3}-24 b \,c^{2} x^{2}+24 a \,c^{2} x -18 b^{2} c x +12 a b c -5 b^{3}\right ) \sqrt {c \,x^{2}+b x +a}\, d^{4}}{4}+\left (\frac {3 b^{4} \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{8 \sqrt {c}}+6 a^{2} c^{\frac {3}{2}} \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )-3 a \sqrt {c}\, b^{2} \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )\right ) d^{4}\) \(166\)
default \(d^{4} \left (16 c^{4} \left (\frac {x^{3} \sqrt {c \,x^{2}+b x +a}}{4 c}-\frac {7 b \left (\frac {x^{2} \sqrt {c \,x^{2}+b x +a}}{3 c}-\frac {5 b \left (\frac {x \sqrt {c \,x^{2}+b x +a}}{2 c}-\frac {3 b \left (\frac {\sqrt {c \,x^{2}+b x +a}}{c}-\frac {b \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{2 c^{\frac {3}{2}}}\right )}{4 c}-\frac {a \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{2 c^{\frac {3}{2}}}\right )}{6 c}-\frac {2 a \left (\frac {\sqrt {c \,x^{2}+b x +a}}{c}-\frac {b \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{2 c^{\frac {3}{2}}}\right )}{3 c}\right )}{8 c}-\frac {3 a \left (\frac {x \sqrt {c \,x^{2}+b x +a}}{2 c}-\frac {3 b \left (\frac {\sqrt {c \,x^{2}+b x +a}}{c}-\frac {b \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{2 c^{\frac {3}{2}}}\right )}{4 c}-\frac {a \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{2 c^{\frac {3}{2}}}\right )}{4 c}\right )+32 b \,c^{3} \left (\frac {x^{2} \sqrt {c \,x^{2}+b x +a}}{3 c}-\frac {5 b \left (\frac {x \sqrt {c \,x^{2}+b x +a}}{2 c}-\frac {3 b \left (\frac {\sqrt {c \,x^{2}+b x +a}}{c}-\frac {b \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{2 c^{\frac {3}{2}}}\right )}{4 c}-\frac {a \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{2 c^{\frac {3}{2}}}\right )}{6 c}-\frac {2 a \left (\frac {\sqrt {c \,x^{2}+b x +a}}{c}-\frac {b \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{2 c^{\frac {3}{2}}}\right )}{3 c}\right )+24 b^{2} c^{2} \left (\frac {x \sqrt {c \,x^{2}+b x +a}}{2 c}-\frac {3 b \left (\frac {\sqrt {c \,x^{2}+b x +a}}{c}-\frac {b \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{2 c^{\frac {3}{2}}}\right )}{4 c}-\frac {a \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{2 c^{\frac {3}{2}}}\right )+8 b^{3} c \left (\frac {\sqrt {c \,x^{2}+b x +a}}{c}-\frac {b \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{2 c^{\frac {3}{2}}}\right )+\frac {b^{4} \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{\sqrt {c}}\right )\) \(722\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*c*d*x+b*d)^4/(c*x^2+b*x+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

d^4*(16*c^4*(1/4*x^3/c*(c*x^2+b*x+a)^(1/2)-7/8*b/c*(1/3*x^2/c*(c*x^2+b*x+a)^(1/2)-5/6*b/c*(1/2*x/c*(c*x^2+b*x+
a)^(1/2)-3/4*b/c*(1/c*(c*x^2+b*x+a)^(1/2)-1/2*b/c^(3/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2)))-1/2/c^(3/
2)*a*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2)))-2/3*a/c*(1/c*(c*x^2+b*x+a)^(1/2)-1/2*b/c^(3/2)*ln((1/2*b+c*x
)/c^(1/2)+(c*x^2+b*x+a)^(1/2))))-3/4*a/c*(1/2*x/c*(c*x^2+b*x+a)^(1/2)-3/4*b/c*(1/c*(c*x^2+b*x+a)^(1/2)-1/2*b/c
^(3/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2)))-1/2/c^(3/2)*a*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2)))
)+32*b*c^3*(1/3*x^2/c*(c*x^2+b*x+a)^(1/2)-5/6*b/c*(1/2*x/c*(c*x^2+b*x+a)^(1/2)-3/4*b/c*(1/c*(c*x^2+b*x+a)^(1/2
)-1/2*b/c^(3/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2)))-1/2/c^(3/2)*a*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a
)^(1/2)))-2/3*a/c*(1/c*(c*x^2+b*x+a)^(1/2)-1/2*b/c^(3/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))))+24*b^2*
c^2*(1/2*x/c*(c*x^2+b*x+a)^(1/2)-3/4*b/c*(1/c*(c*x^2+b*x+a)^(1/2)-1/2*b/c^(3/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+
b*x+a)^(1/2)))-1/2/c^(3/2)*a*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2)))+8*b^3*c*(1/c*(c*x^2+b*x+a)^(1/2)-1/2
*b/c^(3/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2)))+b^4*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))/c^(1/2
))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^4/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more deta

________________________________________________________________________________________

Fricas [A]
time = 2.84, size = 313, normalized size = 2.68 \begin {gather*} \left [\frac {3 \, {\left (b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}\right )} \sqrt {c} d^{4} \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {c} - 4 \, a c\right ) + 4 \, {\left (16 \, c^{4} d^{4} x^{3} + 24 \, b c^{3} d^{4} x^{2} + 6 \, {\left (3 \, b^{2} c^{2} - 4 \, a c^{3}\right )} d^{4} x + {\left (5 \, b^{3} c - 12 \, a b c^{2}\right )} d^{4}\right )} \sqrt {c x^{2} + b x + a}}{16 \, c}, -\frac {3 \, {\left (b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}\right )} \sqrt {-c} d^{4} \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right ) - 2 \, {\left (16 \, c^{4} d^{4} x^{3} + 24 \, b c^{3} d^{4} x^{2} + 6 \, {\left (3 \, b^{2} c^{2} - 4 \, a c^{3}\right )} d^{4} x + {\left (5 \, b^{3} c - 12 \, a b c^{2}\right )} d^{4}\right )} \sqrt {c x^{2} + b x + a}}{8 \, c}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^4/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(3*(b^4 - 8*a*b^2*c + 16*a^2*c^2)*sqrt(c)*d^4*log(-8*c^2*x^2 - 8*b*c*x - b^2 - 4*sqrt(c*x^2 + b*x + a)*(
2*c*x + b)*sqrt(c) - 4*a*c) + 4*(16*c^4*d^4*x^3 + 24*b*c^3*d^4*x^2 + 6*(3*b^2*c^2 - 4*a*c^3)*d^4*x + (5*b^3*c
- 12*a*b*c^2)*d^4)*sqrt(c*x^2 + b*x + a))/c, -1/8*(3*(b^4 - 8*a*b^2*c + 16*a^2*c^2)*sqrt(-c)*d^4*arctan(1/2*sq
rt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c)) - 2*(16*c^4*d^4*x^3 + 24*b*c^3*d^4*x^2 + 6*(
3*b^2*c^2 - 4*a*c^3)*d^4*x + (5*b^3*c - 12*a*b*c^2)*d^4)*sqrt(c*x^2 + b*x + a))/c]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} d^{4} \left (\int \frac {b^{4}}{\sqrt {a + b x + c x^{2}}}\, dx + \int \frac {16 c^{4} x^{4}}{\sqrt {a + b x + c x^{2}}}\, dx + \int \frac {32 b c^{3} x^{3}}{\sqrt {a + b x + c x^{2}}}\, dx + \int \frac {24 b^{2} c^{2} x^{2}}{\sqrt {a + b x + c x^{2}}}\, dx + \int \frac {8 b^{3} c x}{\sqrt {a + b x + c x^{2}}}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)**4/(c*x**2+b*x+a)**(1/2),x)

[Out]

d**4*(Integral(b**4/sqrt(a + b*x + c*x**2), x) + Integral(16*c**4*x**4/sqrt(a + b*x + c*x**2), x) + Integral(3
2*b*c**3*x**3/sqrt(a + b*x + c*x**2), x) + Integral(24*b**2*c**2*x**2/sqrt(a + b*x + c*x**2), x) + Integral(8*
b**3*c*x/sqrt(a + b*x + c*x**2), x))

________________________________________________________________________________________

Giac [A]
time = 3.07, size = 159, normalized size = 1.36 \begin {gather*} \frac {1}{4} \, \sqrt {c x^{2} + b x + a} {\left (2 \, {\left (4 \, {\left (2 \, c^{3} d^{4} x + 3 \, b c^{2} d^{4}\right )} x + \frac {3 \, {\left (3 \, b^{2} c^{4} d^{4} - 4 \, a c^{5} d^{4}\right )}}{c^{3}}\right )} x + \frac {5 \, b^{3} c^{3} d^{4} - 12 \, a b c^{4} d^{4}}{c^{3}}\right )} - \frac {3 \, {\left (b^{4} d^{4} - 8 \, a b^{2} c d^{4} + 16 \, a^{2} c^{2} d^{4}\right )} \log \left ({\left | -2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} \sqrt {c} - b \right |}\right )}{8 \, \sqrt {c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^4/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

1/4*sqrt(c*x^2 + b*x + a)*(2*(4*(2*c^3*d^4*x + 3*b*c^2*d^4)*x + 3*(3*b^2*c^4*d^4 - 4*a*c^5*d^4)/c^3)*x + (5*b^
3*c^3*d^4 - 12*a*b*c^4*d^4)/c^3) - 3/8*(b^4*d^4 - 8*a*b^2*c*d^4 + 16*a^2*c^2*d^4)*log(abs(-2*(sqrt(c)*x - sqrt
(c*x^2 + b*x + a))*sqrt(c) - b))/sqrt(c)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (b\,d+2\,c\,d\,x\right )}^4}{\sqrt {c\,x^2+b\,x+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*d + 2*c*d*x)^4/(a + b*x + c*x^2)^(1/2),x)

[Out]

int((b*d + 2*c*d*x)^4/(a + b*x + c*x^2)^(1/2), x)

________________________________________________________________________________________